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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

Summary: 

 

The authors propose a conditional generative model for 3d molecular structures cG-SchNet. The 

model is conditioned on specified structural and chemical properties and the generated samples 

tend to have such properties in practice. The utility of the method is illustrated in several example 

problems where new molecules are generated with specific motifs, low energy values, and jointly 

targeting multiple electronic properties beyond the training regime. 

 

What are the noteworthy results? 

 

The main noteworthy result is the successful extension of a previous unconditional generative model 

of 3D molecular structures, G-SchNet, to the conditional setting. Previously, targeted generation 

with G-SchNet required to bias the method by fine-tuning it on a fraction of the training data set 

with desired properties. This created problems because usually interesting regions for exploration 

are often those where data is sparse. The new conditional model learns conditional distributions 

depending on structural or chemical properties and should in principle be less affected by that 

problem. Also cG-SchNet can jointly target multiple properties without the need to retrain or 

constrain the sampling process. cG-SchNet makes more efficient use of data resulting in increased 

generalization. 

 

Will the work be of significance to the field and related fields? 

 

The improvements over G-SchNet are significant and the field will be interested in this work. It 

seems to me that this is one of the first works to address the problem of conditional generation of 

3D structures given properties of interests and, therefore, a significant contribution to the field. 

 

How does it compare to the established literature? If the work is not original, please provide 

relevant references. 

 



The experimental comparions are mainly with respect to G-SchNet and the gains seem significant. 

The are no comparisons to other existing methodology, probably because other approaches do not 

work by conditioning on properties but instead optimize a reward that could balance different 

desired properties, including the energy of the resulting molecular configuration. The limitation of 

the proposed method is that it needs a dataset of 3D structures to be trained, while the 

reinforcement learning based methods such as [51,52] do not. 

 

Does the work support the conclusions and claims, or is additional evidence needed? 

 

The experiments show that cG-SchNet can sample particularly stable, low-energy $C_7 O_2 H_{10}$ 

isomers discovering molecules and motifs that are absent from the QM9 database. cG-SchNet is also 

used to sample low-energy molecules with small HOMO-LUMO gaps from a domain that is only 

sparsely represented in the training data. These experiments are enough to show that the proposed 

method seems to work well in practice. 

 

Are there any flaws in the data analysis, interpretation and conclusions? Do these prohibit 

publication or require revision? 

 

I did not spot any flaws in the paper. I would encourage the authors to address my comments on the 

clarity of the molecule generation process as described below. 

 

Is the methodology sound? Does the work meet the expected standards in your field? 

 

The methods section describes sound methodology. The authors mention at the end a limitation of 

the G-SchNet-style approach, which has a cost that is cuadratic in the number of atoms. This will 

prevent the method from working well in large molecules. Another limitation seems the 

dicretization used to sample the atom locations. It is unclear how this can affect performance in 

practice. 

 

Is there enough detail provided in the methods for the work to be reproduced? 

 

I found the description of the sampling process to be confusing. Especially the part on the 

conditional generation of molecules in appendix E. From the paper, it is hard to understand what is 

the connection between equation 22 and equation 14. It seems that the authors multiply all the 



probabilities for each particular grid cell as given by conditioning on all past atoms and then 

normalize. What is the justification for this? 

 

I think the paper would benefit from having a figure showing a cartoon description of how the 

molecule generation process works. The figure could include several vignettes corresponding to 

different steps of the process. 

 

Some minor comments: 

 

The authors should verify that references to arxiv papers cite instead the actual published source. 

 

Figure 1 b -> c 

 

isomers exhibits HOMO-LUMO -> isomers exhibit HOMO-LUMO 

 

 

Reviewer #2 (Remarks to the Author): 

 

The manuscript presents a generative neural network architecture for 3D molecular structures that 

can be biased towards specific chemical properties and molecular motifs. The authors demonstrate 

that the model can generate new organic molecules biased towards specific atomization energies, 

motifs, and other chemical properties. 

 

This manuscript is well written and would be valuable to the scientific community as is. However, 

additional experiments involving the interactions highlighted by the authors in the introduction to 

be challenging to solve without a coordinate-based model (long-range interactions, conformers, 

metallic complexes, etc.) would significantly strengthen this work. The current experiments only 

involve relatively simple organic chemistry and can be done with a graph or smiles-based generative 

model. Aside from this concern, I would recommend this work for publication in Nature 

Communications. 

 

 



 

Reviewer #3 (Remarks to the Author): 

 

Review of Gebauer et al. 

 

This manuscript presents a machine learning-based approach to generate 

molecular structures with given stoichiometry that exhibit particular 

properties. The ansatz pursued is that of a conditional generative 

neural network. 

 

Detailed comments: 

 

1. It appears that the ansatz pursued assumes that the emergence of a 

chemical property, e.g. the HOMO-LUMO gap, is a smooth function of 

chemical composition and molecular structure. This, however, is not 

necessarily the case. It would be of interest to report the HOMO-LUMO 

gap along such a "chemical trajectory" as indicated on by the 

construction procedure in eq. (2) and see how the target property 

"develops" or "emerges" as the molecule grows. Or does the model just 

need to "cover" the desired range of observable with given chemistry? 

 

2. P. 4 states that "..Thus, the model can only learn to generate 

molecules with gaps outside this range from other compositions." What 

are these "other compositions" in the present case? 

 

3. The results suggest that the model increases the probability to 

generate molecular structures and chemical compositions that contain 



the desired target property. The question is whether the procedure 

proposed speeds up discovery relative to exhaustive sampling of all 

graphs. Given that DFT calculations are computationally inexpensive it 

may well be that generating the ML-based model, training it, 

evaluating and testing it is considerably more expensive than 

straightforward generation of the necessary graphs and evaluating and 

filtering for the desired property. A careful discussion of this 

question is required and where the "break-even point" for given 

cost/benefit is. In other words: what is the minimal set of input 

information that is required to reach the results reported. 

 

4. Could "amons" be a useful chemically motivated set of structures 

and chemistries that can serve as a common (minimal?) training set 

that can be enriched with more specific information for a given task? 

 

5. The two sentences "Sampling molecules using conditions that are 

missing...properties of interest." on p. 5 need clarification. In the 

first sentence it is not entirely clear what is missing in the 

training set: is it "molecules" or "conditions" (i.e. properties?)? 

Secondly, depending on the answer to the first question the second 

sentence appears to contradict the first sentence. If "conditions" are 

missing in the training data no ML-based method can generate such 

conditions/properties. 

 

6. Would in true "inverse design" the target property not be part of 

the loss function? In other words, would one not want to include one 

or several hyperparameters in the loss function that explicitly bias 



the final distribution to the target task? At present this appears to 

be achieved by restricting the training set to the complement of the 

target. In other words, one trains on (6<DG<8; with DE as the 

HOMO-LUMO gap) and observes what structures/chemistries the trained 

model returns. Some of the resulting structures then "happen" to be 

outside the training set (which is quite expected) - they are enriched 

(which is nice - see peaks in Figure 3b) - but is this really "deep"? 

 

In summary, the authors present a method that can learn an enriched 

distribution with given properties (e.g. HOMO-LUMO gap) by training on 

the complement and by sampling molecular structures and 

chemistries. At present it is unclear under what circumstances the 

present approach is beneficial over straightforward generation and 

evaluation of a desired chemical composition. At this stage publication is not recommended. 



Response to reviewer comments

We thank all reviewers for their thoughtful comments, which helped us to further
improve our paper. We have adapted the manuscript according to the raised
questions and incorporated the suggestions provided by the expert reviewers. We
have updated Figure 1 to include a schematic depiction of the atom placement loop to
support the provided math with an easy-to-grasp explanation of the underlying
concept. Beyond that, we have evaluated the computational cost of our method
compared to exhaustive enumeration of graphs and subsequent DFT relaxation. Here,
we show that our generative ML model can significantly reduce the computational
cost compared to a naive exploration scheme - even for the small organic molecules
considered in this work. Furthermore, we have added the Supplementary Figure S3,
where we demonstrate how cG-SchNet generates different conformers for $C_7 O_2
H_{10}$ isomers.
Changes in our revision have been marked in blue. In the following, we provide a
detailed response to the reviewer comments.

Reviewer #1 (Remarks to the Author):

Summary:

The authors propose a conditional generative model for 3d molecular structures cG-SchNet.
The model is conditioned on specified structural and chemical properties and the generated
samples tend to have such properties in practice. The utility of the method is illustrated in
several example problems where new molecules are generated with specific motifs, low
energy values, and jointly targeting multiple electronic properties beyond the training regime.

What are the noteworthy results?

The main noteworthy result is the successful extension of a previous unconditional
generative model of 3D molecular structures, G-SchNet, to the conditional setting.
Previously, targeted generation with G-SchNet required to bias the method by fine-tuning it
on a fraction of the training data set with desired properties. This created problems because
usually interesting regions for exploration are often those where data is sparse. The new
conditional model learns conditional distributions depending on structural or chemical
properties and should in principle be less affected by that problem. Also cG-SchNet can
jointly target multiple properties without the need to retrain or constrain the sampling
process. cG-SchNet makes more efficient use of data resulting in increased generalization.

Will the work be of significance to the field and related fields?

The improvements over G-SchNet are significant and the field will be interested in this work.
It seems to me that this is one of the first works to address the problem of conditional
generation of 3D structures given properties of interests and, therefore, a significant
contribution to the field.



How does it compare to the established literature? If the work is not original, please provide
relevant references.

The experimental comparions are mainly with respect to G-SchNet and the gains seem
significant. The are no comparisons to other existing methodology, probably because other
approaches do not work by conditioning on properties but instead optimize a reward that
could balance different desired properties, including the energy of the resulting molecular
configuration. The limitation of the proposed method is that it needs a dataset of 3D
structures to be trained, while the reinforcement learning based methods such as [51,52] do
not.

Does the work support the conclusions and claims, or is additional evidence needed?

The experiments show that cG-SchNet can sample particularly stable, low-energy $C_7 O_2
H_{10}$ isomers discovering molecules and motifs that are absent from the QM9 database.
cG-SchNet is also used to sample low-energy molecules with small HOMO-LUMO gaps from
a domain that is only sparsely represented in the training data. These experiments are
enough to show that the proposed method seems to work well in practice.

Are there any flaws in the data analysis, interpretation and conclusions? Do these prohibit
publication or require revision?

I did not spot any flaws in the paper. I would encourage the authors to address my
comments on the clarity of the molecule generation process as described below.

Thank you for the positive feedback and suggestions. We have updated Fig. 1c to
depict the molecule generation process more clearly.

Is the methodology sound? Does the work meet the expected standards in your field?

The methods section describes sound methodology. The authors mention at the end a
limitation of the G-SchNet-style approach, which has a cost that is cuadratic in the number of
atoms. This will prevent the method from working well in large molecules. Another limitation
seems the dicretization used to sample the atom locations. It is unclear how this can affect
performance in practice.

We have added a paragraph where we compare the demand of training, generation,
and reference calculations for the experiment with low-energy molecules exhibiting a
small HOMO-LUMO gap (page 6-8). We observe that for these small organic
molecules, the currently quadratic costs of the generation are negligible in contrast to
the computational demand of reference calculations for relaxation. The introduction
of a cutoff that limits the number of atoms queried during generation suffices to allow
for linear scaling when working with larger molecules.
Concerning the discretization, the chosen resolution of 0.05 Angstrom is sufficient to
generate diverse, valid, and target-dependent structures across all experiments. Thus,
we conclude that the discretization does not systematically limit the method in
practice. The computational complexity is constant as the same grid can be used



across all steps regardless of the number of atoms in the molecule and the generation
is relatively fast (e.g. more than 100 low-energy molecules with small HOMO-LUMO
gap per second).

Is there enough detail provided in the methods for the work to be reproduced?

I found the description of the sampling process to be confusing. Especially the part on the
conditional generation of molecules in appendix E. From the paper, it is hard to understand
what is the connection between equation 22 and equation 14. It seems that the authors
multiply all the probabilities for each particular grid cell as given by conditioning on all past
atoms and then normalize. What is the justification for this?

I think the paper would benefit from having a figure showing a cartoon description of how the
molecule generation process works. The figure could include several vignettes
corresponding to different steps of the process.

We thank the reviewer for this suggestion. We have assembled such a schematic
depiction of the sampling process and added it to Fig. 1. The figure illustrates the
molecule generation process and we believe that it is a valuable source of information
that makes it easier to convey the general concept of our method.

Regarding the relation between the mentioned equations 14 and 22, the steps 3-5 in
the added figure describe how the probabilities are reconstructed from the
predictions of pairwise distances that we get from the model. It is correct that the
probability in each grid cell is given by multiplication of the corresponding pairwise
distance probabilities to all past atoms. We introduced this approximation with
G-SchNet as it allows us to construct a rotationally equivariant positional distribution
while respecting local and global invariances of molecular structures (e.g. rotation of
groups, indexing of atoms, etc.). We have reported how the approximation can suffer
from artifacts in highly symmetric sub-structures and how this is alleviated by the use
of the auxiliary focus token, which breaks such symmetries (see [48]). Overall, the
distribution is computationally cheap to obtain and has shown to reasonably capture
the characteristics of molecular structures in our experiments. Thus, it is suitable for
targeted discovery of novel molecules in practice. We have added this information to
the manuscript.

Some minor comments:

The authors should verify that references to arxiv papers cite instead the actual published
source.

Figure 1 b -> c

isomers exhibits HOMO-LUMO -> isomers exhibit HOMO-LUMO

We have corrected these mistakes and updated the references.



Reviewer #2 (Remarks to the Author):

The manuscript presents a generative neural network architecture for 3D molecular
structures that can be biased towards specific chemical properties and molecular motifs. The
authors demonstrate that the model can generate new organic molecules biased towards
specific atomization energies, motifs, and other chemical properties.

This manuscript is well written and would be valuable to the scientific community as is.
However, additional experiments involving the interactions highlighted by the authors in the
introduction to be challenging to solve without a coordinate-based model (long-range
interactions, conformers, metallic complexes, etc.) would significantly strengthen this work.
The current experiments only involve relatively simple organic chemistry and can be done
with a graph or smiles-based generative model. Aside from this concern, I would recommend
this work for publication in Nature Communications.

Inspired by your suggestions, we included a brief analysis of conformers found for
the five $C_7 O_2 H_{10}$ isomers most often generated by our model (Fig S3 in the
Supplements). It sketches a path for conformer search with cG-SchNet as an example
application where coordinate-based models are required. We expect that extensive
experiments with systems which require coordinate-based models will be a fruitful
direction for future work on 3d molecule generation evolving from our presented
results.

Reviewer #3 (Remarks to the Author):

Review of Gebauer et al.

This manuscript presents a machine learning-based approach to generate
molecular structures with given stoichiometry that exhibit particular
properties. The ansatz pursued is that of a conditional generative
neural network.

We want to stress that the generation of molecules with given stoichiometry is only
one possible application of our conditional model. However, the atomic composition
does not need to be part of the target properties (see e.g. the experiments with
isotropic polarizability in Fig. 1b, with fingerprints in Fig. 3a, or with low-energy +
small HOMO-LUMO gap in Fig. 5). We have clarified this in the manuscript, e.g. by
adding the following paragraph:
“Our architecture is designed to generate molecules of arbitrary size and does not
require the specification of a target composition. Consequently, it learns the
relationship between the composition of molecules and their physical properties in



order to sample the most suitable candidates for a given target property, e.g.
preferring smaller structures when targeting small polarizabilities.”

Detailed comments:

1. It appears that the ansatz pursued assumes that the emergence of a
chemical property, e.g. the HOMO-LUMO gap, is a smooth function of
chemical composition and molecular structure. This, however, is not
necessarily the case. It would be of interest to report the HOMO-LUMO
gap along such a "chemical trajectory" as indicated on by the
construction procedure in eq. (2) and see how the target property
"develops" or "emerges" as the molecule grows. Or does the model just
need to "cover" the desired range of observable with given chemistry?

Our method does not require intermediate evaluations of a target property for partial
structures. Instead only the expected final property is input to the generation
procedure. Accordingly, only the property of interest of a full molecule is required
during training. Therefore, our model does not have to rely on smoothness
assumptions of the target property w.r.t. a “chemical trajectory”.

We have added Fig. 1c to clarify the generation process.

2. P. 4 states that "..Thus, the model can only learn to generate
molecules with gaps outside this range from other compositions." What
are these "other compositions" in the present case?

This statement relates to the design of the experiment regarding the generalization
capabilities of our model. In the corresponding experiment, the training data consists
of only a few $C_7 N_1 O_1 H_{11}$ molecules with HOMO-LUMO gap values between
6 eV and 8 eV and many structures of other compositions that are randomly sampled
from QM9 and cover the whole range of gaps in the data set (i.e. also smaller than 6
eV and larger than 8 eV). I.e., the model has to transfer the knowledge about
structures with gaps smaller than 6 eV or larger than 8 eV from other compositions
than $C_7 N_1 O_1 H_{11}$ to the target composition when we provide gap values of
5 eV and 9 eV and the composition $C_7 N_1 O_1 H_{11}$ as conditions for sampling .

We designed the task in this way as it is a particularly challenging generalization for
neural networks: one might expect that the model predominantly samples either $C_7
N_1 O_1 H_{11}$ molecules with intermediate gap values or fails to sample the target
composition when building structures with more extreme gap values, as this is what it
has observed in the training data. However, the results show that the model is
successfully able to generalize to this new set of target property values that was
never observed in the training data as it predominantly samples $C_7 N_1 O_1
H_{11}$ molecules close to the extreme gap targets. We have updated this part of the
paper to increase its clarity:
“We restrict the training data consisting of 55k molecules from QM9 to contain no
$C_7 N_1 O_1 H_{11}$ isomers with HOMO-LUMO gap values outside the intermediate



range (Fig. 3b). Thus, the model can only learn to generate molecules with gaps
outside this range from compositions other than $C_7 N_1 O_1 H_{11}$.”

3. The results suggest that the model increases the probability to
generate molecular structures and chemical compositions that contain
the desired target property. The question is whether the procedure
proposed speeds up discovery relative to exhaustive sampling of all
graphs. Given that DFT calculations are computationally inexpensive it
may well be that generating the ML-based model, training it,
evaluating and testing it is considerably more expensive than
straightforward generation of the necessary graphs and evaluating and
filtering for the desired property. A careful discussion of this
question is required and where the "break-even point" for given
cost/benefit is. In other words: what is the minimal set of input
information that is required to reach the results reported.

We agree that this is an important consideration which we missed to report on before.
We have now carefully measured the time for training, generation, and DFT reference
calculations for our experiment with low-energy molecules with small HOMO-LUMO
gap. Although DFT calculations are comparably fast for the small organic molecules
in QM9, the reference calculations still remain the clear bottleneck in the process.
Thus, the question is how many reference calculations are needed to obtain and
identify the desirable molecules. We found that in the considered case where we
target low-energy molecules with small gap values, i.e. property values at the border
of the QM9 distribution, the model already significantly increases the efficiency even
for these small structures. We report:

“The efficiency of cG-SchNet in finding molecular structures close to the target
conditions is particularly evident compared to exhaustive enumeration of graphs with
subsequent relaxation using DFT. In both cases, the relaxation required to obtain
equilibrium coordinates and the physical properties is the computational bottleneck
and takes more than 15 minutes per structure for the molecules generated in this
experiment. Furthermore, the calculation of the internal energy at zero Kelvin (U0)
requires additional 40 minutes per molecule. In contrast, the generation with
cG-SchNet takes only 9 milliseconds per structure on a Nvidia A100 GPU when
sampling in batches of 1250. The training time of about 40 hours is negligible, as it
corresponds to the relaxation and calculation of U0 of only 44 structures. Thus, the
efficiency is determined by the number of molecules that need to be relaxed for each
method. The QM9 data set was assembled by relaxing structures from the GDB
enumeration [61] of graphs for small organic compounds. Of the ~78k molecules that
we did not use for training, 354 molecules are close to the target region. Relaxing only
the 5283 structures proposed by cG-SchNet, i.e. less than 10% of the computations
performed by screening all graphs, we can already recover 46% of these structures.
Additionally, the model has unveiled valid molecules close to the target that are not
contained in the data set. More than 380 of these are larger than QM9 structures and
thus not covered. However, 253 smaller structures were missed by the enumeration
method.”



This shows that an exhaustive exploration by sampling graphs is non-trivial, even for
such small structures. Going to larger molecules will further aggravate this problem,
as the number of possible graphs explodes. Therefore, a guided exploration as with
our cG-SchNet, which effectively limits the number of candidates, becomes the only
feasible option. We updated our discussion accordingly:
“Furthermore, we have sampled more than 800 low-energy molecules with
HOMO-LUMO gaps smaller than 4.5 eV from a domain that is only sparsely
represented in the training data. Although the exploration of such small molecules
with exhaustive sampling of molecular graphs and subsequent evaluation with
density functional theory is computationally feasible, our model considerably
accelerates the process by providing reasonable candidate structures.”

4. Could "amons" be a useful chemically motivated set of structures
and chemistries that can serve as a common (minimal?) training set
that can be enriched with more specific information for a given task?

Indeed, “amons” or other fragmentation approaches can provide initial training data,
in particular when targeting larger structures. We have updated our discussion to
include this idea:
“While the small organic compounds considered in this work are well represented by
QM9, the model might benefit from enhancing the training data using representative
building blocks such as ‘amons’ [63] or other fragmentation methods [64, 65]. This
becomes increasingly important when tackling larger molecules where reference data
is hard to obtain.“

5. The two sentences "Sampling molecules using conditions that are
missing...properties of interest." on p. 5 need clarification. In the
first sentence it is not entirely clear what is missing in the
training set: is it "molecules" or "conditions" (i.e. properties?)?
Secondly, depending on the answer to the first question the second
sentence appears to contradict the first sentence. If "conditions" are
missing in the training data no ML-based method can generate such
conditions/properties.

Here we refer to molecules with specific target property values that are missing in the
training data (i.e. a very small HOMO-LUMO gap and low energy). We have clarified
this part:
“The ability to sample molecules that exhibit property values which are missing in the
training data is a prerequisite for the targeted exploration of chemical space. A
generative model needs to fill the sparsely sampled regions of the space, effectively
enhancing the available data with novel structures that show property values of
interest.”

6. Would in true "inverse design" the target property not be part of
the loss function? In other words, would one not want to include one
or several hyperparameters in the loss function that explicitly bias
the final distribution to the target task? At present this appears to
be achieved by restricting the training set to the complement of the



target. In other words, one trains on (6<DG<8; with DE as the
HOMO-LUMO gap) and observes what structures/chemistries the trained
model returns. Some of the resulting structures then "happen" to be
outside the training set (which is quite expected) - they are enriched
(which is nice - see peaks in Figure 3b) - but is this really "deep"?

The target property is part of the loss function implicitly, since it is given to the model
as input, which is the crucial benefit of our conditional approach. The model learns
the conditional distribution of molecules in a general training phase, based on both
the structures and their properties. Afterwards, one can specify any combination of
conditions (i.e. values of the target properties) to sample molecules that are highly
likely to exhibit the desired conditions.
Previous approaches for 3d molecules, which do not handle conditions, need to be
trained for one specific set of target properties by carefully adjusting the training data
(e.g. biased G-SchNet) or the loss function/objective (e.g. the reinforcement
learning-based methods). Those models cannot be used to target other property
values without retraining them with adjusted data or loss. Since this is an important
advantage of our approach, we have adapted a few sentences in the introduction to
further stress and clarify the difference between conditioning (our method) and
biasing/training (previous methods):

“Previously proposed methods have been biased towards one particular set of target
property values at a time by adjusting the training objective or data [48, 51]. In
contrast, our conditional approach permits searching for molecules with any
desirable set of target property values after training is completed. It is able to jointly
target multiple properties without the need to retrain or otherwise indirectly constrain
the sampling process. This provides the foundation for the model to leverage the full
information of the training data resulting in increased generalization and data
efficiency.”

Furthermore, there is no need to train the model on the “complement” of the target,
but targeting molecules that have property values which were left out during training
is a comparatively hard generalization task. We designed some of our experiments to
target the “complement” of the training data only to demonstrate the generalization
capabilities of cg-SchNet. The model is able to sample structures exhibiting the
specified target values, exactly because it captures the conditional distribution - i.e.
the differing probability of certain molecules and motifs depending on the provided
target property values.

In summary, the authors present a method that can learn an enriched
distribution with given properties (e.g. HOMO-LUMO gap) by training on
the complement and by sampling molecular structures and
chemistries. At present it is unclear under what circumstances the
present approach is beneficial over straightforward generation and
evaluation of a desired chemical composition. At this stage publication is not recommended.

We have adapted the manuscript in order to increase its clarity and its advantages
over unconditioned methods. Furthermore, we discuss additional results that



compare the computational complexity of our method to exhaustive enumeration and
relaxation of graphs, where we see that the proposed generative model is already
more efficient than the exhaustive approach. We are happy that the manuscript has
significantly improved thanks to the excellent and helpful suggestions by the
reviewers.



REVIEWER COMMENTS 

 

Reviewer #3 (Remarks to the Author): 

 

Re-review of Gebauer et al. 

 

The authors have addressed and clarified some of the points raised by 

the referees. One open point is still in what sense the present work 

is related to "inverse design" and how significant this progress is. 

 

1. A concise statement of the problem being solved is required. Is it 

to find "the best molecule with a particular property" or is it to 

suggest "families or classes of molecules with a specific property"? 

Or something else? 

 

2. The authors stress that multi-property optimization is possible 

with the present approach. Here, the two properties considered are the 

HOMO-LUMO gap and the relative atomic energy. In Figure 4d: the 

authors explain that the energy values indicate "..comparatively low 

energy..". As the molecules all have identical chemical composition it 

would be more transparent to report the energy difference with respect 

to either a) the lowest energy structure encountered or b) the largest 

stabilization energy. What does a "target energy of -0.1 eV" mentioned 

in the caption actually mean? 

 

3. The caption for Figure 4d states that "Relaxed example low-energy 

isomers generated by cG-SchNet.." are reported. How do these 



structures change when re-optimized with quantum chemistry? By how 

much do structures and energies change? In other words, how "good" are 

the relaxed structures predicted by cG-SchNet when compared with 

results from electronic structure calculations? 

 

4. How does the approach extend when additional properties 

(polarizabilities, dipole moment, etc.) included? While one can 

expect that cG-SchNet is extensible in these regards, the question is 

of what value this will be in practice because molecules with optimal 

"property 1" will potentially be "in the middle of the distribution 

for property 2". In other words: finding a molecule for which all 

properties are "optimal" is probably neither realistic nor 

meaningful. Hence the request to define the task - see point 1 above. 

 

5. With respect to point 1 above: what is the molecule with the 

largest / smallest HOMO-LUMO gap predicted by the present model and 

how does this compare with the results from electronic structure 

calculations? Of course, this quest is only meaningful if the 

molecules with the largest/smallest HOMO-LUMO gaps are not included in 

the test set. This question concerns the extrapolation behaviour of 

the model. 

 

6. The authors write that the model needs "..to fill the sparsely 

sampled regions.." which targets the interpolation properties of the 

model. Is it by now not accepted that this "interpolation" in general 

is possible, e.g. from the work by von Lilienfeld? What appears more 

challenging is extrapolation. Discussing this point is required. 



 

7. One possibility for an overarching test would be to plot the 

HOMO-LUMO gap vs. difference in total energy between the molecules and 

the lowest energy structure for a) the model and b) for electronic 

structure calculations. This could be separated into training set and 

randomly drawn samples. Such a plot would cover both, interpolation 

and extrapolation of the model. 

 

 

While there is no doubt that the work presented is of high quality the 

question still remains how significant the step forward really 

is. Much of this depends on what precisely the quest pursued is and 

how the model performs away "from its comfort zone", i.e. for 

extrapolation. 

 



Response to reviewer comments

We thank the reviewer for the additional comments and questions. Changes in our
revision have been marked in blue. In the following, we provide a detailed response to
the reviewer comments.

Reviewer #3 (Remarks to the Author):

Re-review of Gebauer et al.

The authors have addressed and clarified some of the points raised by the referees. One
open point is still in what sense the present work is related to "inverse design" and how
significant this progress is.

1. A concise statement of the problem being solved is required. Is it to find "the best
molecule with a particular property" or is it to suggest "families or classes of molecules with a
specific property"? Or something else?

The goal of our work is to find a set of candidate molecules with specific properties.
As stated in the abstract, the model “enables targeted sampling of novel molecules
from conditional distributions, even in domains where reference calculations are sparse.”
This is achieved by learning a distribution of molecular structures, where molecules with
the desired properties have a higher probability of being drawn. For an excellent and
extensive introduction to various approaches of molecular inverse design, including deep
generative models, we refer to Sanchez-Lengeling et al. (Science 361, 360–365, 2018) in
the paper. We have further clarified the motivation of our approach in the introduction as
follows:

“Generative ML models have recently gained traction as a powerful, data-driven approach
to inverse design as they enable sampling from a learned distribution of molecular
configurations [29]. By appropriately restricting the distributions, they allow to obtain sets
of candidate structures with desirable characteristics for further evaluation. [...]
Consequently, [our model] learns the relationship between the composition of molecules
and their physical properties in order to sample candidates exhibiting given target
properties, e.g. preferring smaller structures when targeting small polarizabilities.”

2. The authors stress that multi-property optimization is possible with the present approach.
Here, the two properties considered are the HOMO-LUMO gap and the relative atomic
energy. In Figure 4d: the authors explain that the energy values indicate "..comparatively low
energy..". As the molecules all have identical chemical composition it would be more
transparent to report the energy difference with respect to either a) the lowest energy
structure encountered or b) the largest stabilization energy. What does a "target energy of
-0.1 eV" mentioned in the caption actually mean?

We have defined the relative atomic energy as the total energy minus the average
energy of molecules of the same composition and normalized by the number of
atoms. Similar to the atomization energy, this removes the single-atom energy



contributions and allows us to treat molecules of different size and composition in a
comparable and normalized manner. However, instead of the single atom energy in
vacuum, we use the mean energy of an atom in molecular environments according to
the reference data. Therefore, the target of -0.1 eV means that the conformations
sampled shall have 0.1 eV lower energy per atom than the average arrangements of
atoms with that composition in QM9.  We explain the relative atomic energy in detail in
Supplementary Methods X B. Note that Zubtyuk et al. (Science Advances 5(8):
eaav6490, 2019) have defined a similar energy for their neural network potential
AIMNet.
The distribution of the relative atomic energy of C7O2H10 structures in QM9 is plotted
in Figure 4a (orange line) and puts the target energy of -0.1 eV into context: it is a low
value at the tail of the distribution, i.e. close to the C7O2H10 isomers with the lowest
energy in QM9. Although it would be possible to change the reference point in the
evaluation as suggested, we are convinced that it is most transparent to report the
values of the property that the model is conditioned on, i.e. the relative atomic energy.
Otherwise, the relationship between the energy used during training and the energy
depicted in the plots might confuse the readers. We added further explanation to
better clarify our choice and to avoid potential misunderstanding.

3. The caption for Figure 4d states that "Relaxed example low-energy isomers generated by
cG-SchNet.." are reported. How do these structures change when re-optimized with
quantum chemistry? By how much do structures and energies change? In other words, how
"good" are the relaxed structures predicted by cG-SchNet when compared with results from
electronic structure calculations?

The changes of structures before and after relaxation have been reported for all our
experiments in Supplementary Table 2. We measure the spatial change between
conformations before and after re-optimization (i.e. relaxation) with the
root-mean-square deviation (RMSD) of the atom positions. For the molecules from the
experiment depicted in Fig. 4d, the median of the RMSD is 0.26 Angstrom. In order to
further visualize these results, we have added Supplementary Figure 4, where we plot
generated C7O2H10 conformations versus the closest equilibrium found by relaxation
and report the corresponding RMSD per structure. Here we see that the generated
structures are close to results from electronic structure calculations and the
deviations can mostly be attributed to rearrangements of hydrogen atoms.

4. How does the approach extend when additional properties (polarizabilities, dipole
moment, etc.) included? While one can expect that cG-SchNet is extensible in these
regards, the question is of what value this will be in practice because molecules with optimal
"property 1" will potentially be "in the middle of the distribution for property 2". In other words:
finding a molecule for which all properties are "optimal" is probably neither realistic nor
meaningful. Hence the request to define the task - see point 1 above.

As demonstrated in Fig. 5, the cG-SchNet shifts the unconditional distribution of
molecules such that the specified combination of properties becomes more likely
during sampling. Of course, if the chosen target is impossible to realize, the model
will yield structures with various trade-offs. Note that it is a known limitation of
conditional generative models for molecular inverse design that these trade-offs can



not be specified (see for example the graph and SMILES based models by Li et al.
(Journal of Cheminformatics 10(1): 1-24, 2018), Lim et al. (Journal of Cheminformatics
10(1): 1-9, 2018), or Polykovskiy et al. (Molecular Pharmaceutics 15(10): 4398-4405,
2018)). An extension to overcome these shortcomings, e.g. by explicitly sampling
along a Pareto front, is an interesting direction for future work. In practice, we
combine cG-SchNet with a fast neural network potential in order to filter the generated
candidates according to the desired target property trade-off. We updated the
discussion to further clarify this point.

5. With respect to point 1 above: what is the molecule with the largest / smallest
HOMO-LUMO gap predicted by the present model and how does this compare with the
results from electronic structure calculations? Of course, this quest is only meaningful if the
molecules with the largest/smallest HOMO-LUMO gaps are not included in the test set. This
question concerns the extrapolation behaviour of the model.

In our experiments, the model is not conditioned to find “the one molecule with the
smallest HOMO-LUMO gap” but rather “a set of suitable candidates with HOMO-LUMO
gap close to the target value” (i.e. small relative to the training examples). In this light,
it appears more relevant to check how many unique and valid 3d structures close to
the target property value(s) are found. We report the structures sampled closest to the
targets for all experiments (see e.g. Figures 4 and 5). Beyond that, we have added
Supplementary Figure 5, which shows examples of molecules with particularly low
HOMO-LUMO gap for both the model and the training set (see our response to point 7
below for more details).

6. The authors write that the model needs "..to fill the sparsely sampled regions.." which
targets the interpolation properties of the model. Is it by now not accepted that this
"interpolation" in general is possible, e.g. from the work by von Lilienfeld? What appears
more challenging is extrapolation. Discussing this point is required.

Whether one is in the extrapolation or interpolation regime depends on the feature
space and which assumptions are made about its structure. cG-SchNet can efficiently
exploit the structure of the feature space by leveraging rotational and translational
symmetries as well as locality assumptions. Although inference from small to large
molecules is often considered extrapolation, it may actually correspond to
interpolation in the cG-SchNet feature space. Therefore, we rather prefer the term
“generalization” over “extrapolation” in this context.
Note that we have focused on this very aspect in the presented experiments. We
extensively show the generalization capabilities of our model by using conditions that
were either missing in the training data (e.g. a specific composition, a combination of
composition and HOMO-LUMO gap value, a novel fingerprint) or are at the borders of
the training distribution (e.g. small HOMO-LUMO gap and energy or extreme
polarizability values) and observe that novel structures with traits that are missing
within QM9 are sampled (e.g. C7O2H10 with carboxylic acid groups or molecules with
more than 9 heavy atoms for large polarizability). We have clarified this in the
discussion.



7. One possibility for an overarching test would be to plot the HOMO-LUMO gap vs.
difference in total energy between the molecules and the lowest energy structure for a) the
model and b) for electronic structure calculations. This could be separated into training set
and randomly drawn samples. Such a plot would cover both, interpolation and extrapolation
of the model.

This kind of evaluation is indeed illuminating and can be found in Figure 5a. Note,
however, that we use the relative atomic energy, as described above, which has the
same information content. The HOMO-LUMO gap vs the relative atomic energy are
plotted for both the training data (QM9, left-hand side) and molecules generated with
our model (right-hand side). Our evaluation shows that the model generalizes well as
it unveils more structures in the target region at the border of the QM9 distribution
than can be found in QM9 itself. The goal of the experiment depicted in Figure 5 is to
find molecules with low HOMO-LUMO gaps (relative to the training data) while
avoiding undesirable, unstable motifs (which we observed when sampling low
HOMO-LUMO gap structures with the previous G-SchNet model). We achieve this by
conditioning on the relative atomic energy, which relates the energy of molecules to
other isomers of the same composition. This energy is usually higher, when such
unstable motifs are present. We added further clarification to Figure 5 and the
corresponding subsection in the results.
Furthermore, we have added Supplementary Figure 5, where we zoom in on the target
region and show individual points (i.e. the gap and energy of  individual molecules)
instead of plotting the density. Here one can assess the interpolation and
extrapolation in detail: while the conditioning target has been chosen at the edge of
the training distribution, the neural network extrapolates to candidate molecules with
lower relative atomic energy and HOMO-LUMO gap.

While there is no doubt that the work presented is of high quality the question still remains
how significant the step forward really is. Much of this depends on what precisely the quest
pursued is and how the model performs away "from its comfort zone", i.e. for extrapolation.

As acknowledged by Reviewer #1, cG-SchNet is “one of the first works to address the
problem of conditional generation of 3D structures given properties of interests”.  The
generalization performance of our model is thoroughly evaluated and discussed (see
answer to point 6 above). All experiments involve conditions which are rare or even
unseen by the model during training, i.e. “away from its comfort zone”. On this basis,
we find that cG-SchNet is ready to be employed in practice for generating candidate
molecular structures with desired properties that generalize beyond the reference
data. We therefore firmly believe that cG-SchNet is indeed a highly significant step
forward in the inverse design of 3D molecules with generative ML models.



REVIEWERS' COMMENTS 

 

Reviewer #3 (Remarks to the Author): 

 

Re-review of Gebauer et al. 

 

The authors have addressed some of the additional points 

raised. Nevertheless, open questions remain. 

 

1. The value of 0.1 for the "target energy" appears to be universal 

across all elements and for each atomic species (H, C, N, O,..) in all 

chemical environments encountered. This is unrealistic, see e.g. Unke 

and Meuwly, JCP 2018, who also analyzed QM9 in this regard. 

 

2. In the reply to query 3 of reviewer 3 the authors report the 

structureal RMSD. But how do the minimum energies and the HOMO-LUMO 

gaps change/differ between the relaxed structure predicted by 

cG-SchNet and by quantum chemistry? 

 

3. While Figure S5 provides an impression of the generalization 

capabilities, the 4 molecules contain 10 instead of 9 heavy atoms and 

thus provide only limited information on the broader question of 

generalization. 

 

4. Although touched upon on p. 8, it is not really clear that the present approach is truly more 

effective in terms of a) overall computer time for the entire workflow and b) improved accuracy over 

a more standard approach to determine candidate molecules falling into specific target ranges for 

certain observables. 



Response to reviewer comments

We thank the reviewer for the additional comments. Changes in our revision have
been marked in blue. In the following, we provide a detailed response to the reviewer
comments.

Reviewer #3 (Remarks to the Author):

Re-review of Gebauer et al.

The authors have addressed some of the additional points
raised. Nevertheless, open questions remain.

1. The value of 0.1 for the "target energy" appears to be universal
across all elements and for each atomic species (H, C, N, O,..) in all
chemical environments encountered. This is unrealistic, see e.g. Unke
and Meuwly, JCP 2018, who also analyzed QM9 in this regard.

In the cited work, the contributions of atomic species and chemical environments to
the energy is analyzed in absolute terms. This is different from our approach, where
we use a relative atomic energy as explained in our previous response and in
Supplementary Methods 2:

“We define a relative atomic energy that describes whether the energy per atom of a
3d conformation is comparatively high or low with respect to other structures in the
data set that share the same atomic composition [...]. In this way, we can [...] treat
molecules of different size and composition in a comparable and normalized manner.
This allows our model to learn a relation between 3d conformations and their energy
that can be transferred across compositions, as can be seen in our experiments
where we sample low-energy C_7O_2H_10 isomers with a model that was trained
solely on other compositions (see Figure 4 in the paper).”

The reference point for the relative atomic energy depends on the atomic composition
which makes the energy of molecules with different compositions comparable. The
range of the relative atomic energy varies for different compositions and therefore the
target value of -0.1 eV is not universal but specifically chosen for C_7O_2H_10
isomers by checking the range in QM9 (see Figure 4a). In the experiments with
low-energy structures with small HOMO-LUMO gap, we instead use a target energy of
-0.2 eV as the composition is not fixed in this setting and therefore the range is
increased.

2. In the reply to query 3 of reviewer 3 the authors report the
structureal RMSD. But how do the minimum energies and the HOMO-LUMO
gaps change/differ between the relaxed structure predicted by
cG-SchNet and by quantum chemistry?



The goal of cG-SchNet is to obtain a limited set of candidate structures that are highly
likely to exhibit the target properties in order to reduce the amount of quantum
chemistry reference calculations when exploring chemical space. We assume that in
practical settings the structures obtained with our model are subsequently relaxed
with DFT or neural network potentials for further evaluation and selection. Therefore,
we report the energy and HOMO-LUMO gap of relaxed structures. The precise energy
and HOMO-LUMO gap of raw, sampled structures is not relevant as long as the
molecules do not drastically change during relaxation. To verify this, we report the
structural RMSD, which shows that “cG-SchNet samples molecules which are close to
equilibrium configurations and thus require only a few steps of relaxation with DFT or
a neural network potential”. We have clarified this in the manuscript.

3. While Figure S5 provides an impression of the generalization
capabilities, the 4 molecules contain 10 instead of 9 heavy atoms and
thus provide only limited information on the broader question of
generalization.

We did not consider the number of atoms when picking the example structures in
Supplementary Figure 5. However, cG-SchNet also samples novel molecules with 9
heavy atoms and with gap and energy outside the training data distribution. We have
added such a structure to the figure.
Note that the step from 9 to 10 heavy atoms and how it exactly influences energy and
HOMO-LUMO gap is not explicitly represented in the training data. Therefore,
sampling molecules with more than 9 heavy atoms that meet the target properties is a
prime example of generalization. We have clarified this in the manuscript.

4. Although touched upon on p. 8, it is not really clear that the present approach is truly more
effective in terms of a) overall computer time for the entire workflow and b) improved
accuracy over a more standard approach to determine candidate molecules falling into
specific target ranges for certain observables.

Our evaluation contains a comparison of finding low-energy molecules with small
HOMO-LUMO gap with cG-SchNet and with exhaustive enumeration of graphs
including subsequent DFT relaxation. We report the average computation time of
training cG-SchNet (40 hours), sampling a molecule with cG-SchNet (9 ms), relaxing a
molecule with DFT (15 min), and calculating U0 of molecules with DFT (40 min) for
that experiment. As the relaxation of molecules is clearly the bottleneck, we compare
the number of structures that need to be relaxed and how many target molecules can
be obtained in both approaches. We find that “we obtain more than two times the
amount of molecules close to the target property values with cG-SchNet than with the
exhaustive enumeration method while requiring less than 10% of the computation
time.” We have clarified this in the manuscript to pronounce that cG-SchNet is, in this
instance, clearly more effective in terms of overall computing time and the amount of
found structures that exhibit target properties. Beyond that, a comparison of the
effectiveness of cG-SchNet to different established methods in various fields,
including different properties and varying target ranges, is an important direction for
future work and we have added this point to the discussion.
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